Package: DBHC (via r-universe)

October 9, 2024

```
Version 0.0.3
Date 2022-12-21
Author Gabriel Budel [aut, cre], Flavius Frasincar [aut]
Maintainer Gabriel Budel <gabysp_budel@hotmail.com>
Description Provides an implementation of a mixture of hidden Markov
     models (HMMs) for discrete sequence data in the Discrete
     Bayesian HMM Clustering (DBHC) algorithm. The DBHC algorithm is
     an HMM Clustering algorithm that finds a mixture of
     discrete-output HMMs while using heuristics based on Bayesian
     Information Criterion (BIC) to search for the optimal number of
     HMM states and the optimal number of clusters.
License GPL (>= 3)
Encoding UTF-8
URL https://github.com/gabybudel/DBHC
BugReports https://github.com/gabybudel/DBHC/issues
LazyData true
Imports seqHMM (>= 1.0.8), TraMineR (>= 2.0-7), reshape2 (>= 1.2.1),
     ggplot2 (>= 2.2.1), methods (>= 4.2.2)
NeedsCompilation no
RoxygenNote 7.2.3
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Repository https://gabybudel.r-universe.dev
RemoteUrl https://github.com/gabybudel/dbhc
RemoteRef HEAD
RemoteSha b071dee90105ce689bfe9c2bfcbe18166b1c4a74
```

Title Sequence Clustering with Discrete-Output HMMs

Type Package

2 assign.clusters

Contents

assign.clusters	
cluster.bic	
count.parameters	
emission.heatmap	4
hmm.clust	
model.ll	^
partition.bic	
select.seeds	
seq2hmm.ll	9
size.search	
smooth.hmm	
smooth.probabilities	1
transition.heatmap	
•	
	13

Description

assign.clusters

Index

Assign sequences to cluster models that give the highest sequence-to-hmm likelihood. Used in hmm.clust.

Usage

```
assign.clusters(partition, memberships, sequences, smoothing = 1e-04)
```

Cluster Assignment

Arguments

partition	A list object with the partition, a mixture of HMMs. Each element in the list is an hmm object (see build_hmm).
memberships	A matrix with cluster memberships for each sequence.
sequences	An stslist object (see seqdef) of sequences with discrete observations.
smoothing	Smoothing parameter for absolute discounting in smooth.probabilities.

Value

The updated matrix with cluster memberships for each sequence.

See Also

Used in main function for the DBHC algorithm hmm.clust.

cluster.bic 3

cluster.bic HMM BIC

Description

Compute the BIC of a single HMM given a threshold epsilon for counting parameters. Auxiliary function used in size.search.

Usage

```
cluster.bic(hmm, eps = 0.001)
```

Arguments

hmm An hmm object (see build_hmm).

eps A threshold epsilon for counting parameters.

Value

The BIC of hmm.

See Also

Used in size.search.

count.parameters

Count HMM Parameters

Description

Count the number of parameters in an HMM larger than a small number epsilon. Auxiliary function used in partition.bic and cluster.bic.

Usage

```
count.parameters(hmm, eps = 0.001)
```

Arguments

hmm An hmm object (see build_hmm).

eps A threshold epsilon for counting parameters.

Value

The number of parameters larger than eps.

4 hmm.clust

See Also

Used in partition.bic and cluster.bic.

emission.heatmap

Heatmap Emission Probabilities

Description

Plots a heatmap of an HMM's emission probabilities.

Usage

```
emission.heatmap(emission, base_size = 10)
```

Arguments

emission A matrix with emission probabilities (see also build_hmm).

base_size Numerical, a size parameter for the plots made using ggplot2 (see theme), de-

fault = 10.

See Also

See hmm. clust for an example.

hmm.clust

DBHC Algorithm

Description

Implementation of the DBHC algorithm, an HMM clustering algorithm that finds a mixture of discrete-output HMMs. The algorithm uses heuristics based on BIC to search for the optimal number of hidden states in each HMM and the optimal number of clusters.

Usage

```
hmm.clust(
    sequences,
    id = NULL,
    smoothing = 1e-04,
    eps = 0.001,
    init.size = 2,
    alphabet = NULL,
    K.max = NULL,
    log_space = FALSE,
    print = FALSE,
    seed.size = 3
)
```

hmm.clust 5

Arguments

sequences	An stslist object (see seqdef) of sequences with discrete observations or a data.frame.
id	A vector with ids that identify the sequences in sequences.
smoothing	Smoothing parameter for absolute discounting in smooth.probabilities.
eps	A threshold epsilon for counting parameters in count.parameters.
init.size	The number of HMM states in an initial HMM.
alphabet	The alphabet of output labels, if not provided alphabet is taken from stslist object (see seqdef).
K.max	Maximum number of clusters, if not provided algorithm searches for the optimal number itself.
log_space	Logical, parameter provided to fit_model for whether to use optimization in log space or not.
print	Logical, whether to print intermediate steps or not.
seed.size	Seed size, the number of sequences to be selected for a seed

Value

A list with components:

sequences An stslist object of sequences with discrete observations.

id A vector with ids that identify the sequences in sequences.

cluster A vector with found cluster memberships for the sequences.

partition A list object with the partition, a mixture of HMMs. Each element in the list is an hmm object.

memberships A matrix with cluster memberships for each sequence.

n.clusters Numerical, the found number of clusters.

sizes A vector with the number of HMM states for each cluster model.

bic A vector with the BICs for each cluster model.

Examples

```
## Simulated data
library(seqHMM)
output.labels <- c("H", "T")

# HMM 1
states.1 <- c("A", "B", "C")
transitions.1 <- matrix(c(0.8,0.1,0.1,0.1,0.8,0.1,0.1,0.1,0.8), nrow = 3)
rownames(transitions.1) <- states.1
colnames(transitions.1) <- states.1
emissions.1 <- matrix(c(0.5,0.75,0.25,0.5,0.25,0.75), nrow = 3)
rownames(emissions.1) <- states.1
colnames(emissions.1) <- output.labels
initials.1 <- c(1/3,1/3,1/3)</pre>
```

6 hmm.clust

```
# HMM 2
states.2 <- c("A", "B")
transitions.2 <- matrix(c(0.75, 0.25, 0.25, 0.75), nrow = 2)
rownames(transitions.2) <- states.2</pre>
colnames(transitions.2) <- states.2</pre>
emissions.2 <- matrix(c(0.8,0.6,0.2,0.4), nrow = 2)
rownames(emissions.2) <- states.2</pre>
colnames(emissions.2) <- output.labels</pre>
initials.2 <- c(0.5,0.5)
# Simulate
hmm.sim.1 <- simulate_hmm(n_sequences = 100,</pre>
                          initial_probs = initials.1,
                          transition_probs = transitions.1,
                          emission_probs = emissions.1,
                          sequence_length = 25)
hmm.sim.2 <- simulate_hmm(n_sequences = 100,</pre>
                          initial_probs = initials.2,
                          transition_probs = transitions.2,
                          emission_probs = emissions.2,
                          sequence_length = 25)
sequences <- rbind(hmm.sim.1$observations, hmm.sim.2$observations)</pre>
n <- nrow(sequences)</pre>
# Clustering algorithm
id <- paste0("K-", 1:n)</pre>
rownames(sequences) <- id</pre>
sequences <- sequences[sample(1:n, n),]</pre>
res <- hmm.clust(sequences, id = rownames(sequences))</pre>
## Swiss Household Data
data("biofam", package = "TraMineR")
# Clustering algorithm
new.alphabet <- c("P", "L", "M", "LM", "C", "LC", "LMC", "D")</pre>
sequences <- seqdef(biofam[,10:25], alphabet = 0:7, states = new.alphabet)</pre>
## Not run:
res <- hmm.clust(sequences)</pre>
# Heatmaps
cluster <- 1 # display heatmaps for cluster 1</pre>
transition.heatmap(res$partition[[cluster]]$transition_probs,
                   res$partition[[cluster]]$initial_probs)
emission.heatmap(res$partition[[cluster]]$emission_probs)
## End(Not run)
```

model.ll 7

model.11

Get HMM Log Likelihood

Description

Get the log likelihood of an HMM object and check if it is feasible (i.e., contains no illegal emissions). Auxiliary function used in partition.bic.

Usage

```
model.11(hmm)
```

Arguments

hmm

An hmm object (see build_hmm).

Value

The log likelihood of the hmm object, print warning if model is infeasible (i.e., if the log likelihood is evaluated for a sequence that contains emissions that are assigned probability 0 in the hmm object).

See Also

Used in partition.bic.

8 select.seeds

partition.bic

Partition BIC

Description

Compute the BIC of a partition given a threshold epsilon for counting parameters. Auxiliary function used in hmm. clust.

Usage

```
partition.bic(partition, eps = 0.001)
```

Arguments

partition A list object with the partition of HMMs, a mixture of HMMs.

eps A threshold epsilon for counting parameters in count.parameters.

Value

The BIC of the partition.

See Also

Used in main function for the DBHC algorithm hmm.clust.

select.seeds

Seed Selection Procedure

Description

Seed selection procedure of the DBHC algorithm, also invokes size search algorithm for seed in size.search. Used in hmm.clust.

Usage

```
select.seeds(
   sequences,
   log_space = FALSE,
   K,
   seed.size = 3,
   init.size = 2,
   print = FALSE,
   smoothing = 1e-04
)
```

seq2hmm.ll 9

Arguments

sequences	An stslist object (see seqdef) of sequences with discrete observations.
log_space	Logical, parameter provided to fit_model for whether to use optimization in log space or not.
K	The number of seeds to select, equal to the number of clusters in a partition.
seed.size	Seed size, the number of sequences to be selected for a seed.
init.size	The number of HMM states in an initial HMM.
print	Logical, whether to print intermediate steps or not.
smoothing	Smoothing parameter for absolute discounting in smooth.probabilities.

Value

A partition as a list object with HMMs for the selected seeds.

See Also

Used in main function for the DBHC algorithm hmm. clust.

Description

Compute the sequence-to-HMM likelihood of an HMM evaluated for a single sequence and check if the sequence contains emissions that are not possible according to the HMM. Auxiliary function used in select.seeds and assign.clusters.

Usage

```
seq2hmm.ll(hmm)
```

Arguments

hmm An hmm object (see build_hmm) containing a single sequence.

Value

The log likelihood of the sequence contained in hmm, value will be set to minus infinity if the sequence contains illegal emissions.

See Also

Used in select.seeds and assign.clusters.

10 smooth.hmm

size.search	Size Search Algorithm
-------------	-----------------------

Description

The size search algorithm finds the optimal number of HMM states for a set of sequences and returns both the optimal hmm object and the corresponding number of hidden states. Used in select.seeds.

Usage

```
size.search(sequences, log_space = FALSE, print = FALSE)
```

Arguments

sequences An stslist object (see sequences with discrete observations.

log_space Logical, parameter provided to fit_model for whether to use optimization in

log space or not.

print Logical, whether to print intermediate steps or not.

Value

A list with the optimal number of HMM states and the optimal hmm object.

See Also

Used in the DBHC seed selection procedure in select.seeds.

smooth.hmm	Smooth HMM Parameters	

Description

Smooth the parameters of an HMM using absolute discounting given a threshold epsilon. Auxiliary function used in select.seeds, assign.clusters, and hmm.clust.

Usage

```
smooth.hmm(hmm, smoothing = 1e-04)
```

Arguments

hmm A raw hmm object (see build_hmm).

smoothing Smoothing parameter for absolute discounting in smooth.probabilities.

smooth.probabilities 11

Value

An hmm object with smoothed probabilities.

See Also

Used in select.seeds, assign.clusters, and main function for the DBHC algorithm hmm.clust.

smooth.probabilities Smooth Probabilities

Description

Smooth a vector of probabilities using absolute discounting. Auxiliary function used in smooth.hmm.

Usage

```
smooth.probabilities(probs, smoothing = 1e-04)
```

Arguments

probs A vector of raw probabilities.

smoothing Smoothing parameter for absolute discounting.

Value

A vector of smoothed probabilities.

See Also

Used in smooth.hmm.

transition.heatmap *Heatmap Transition Probabilities*

Description

Plots a heatmap of an HMM's initial and transition probabilities.

Usage

```
transition.heatmap(transition, initial = NULL, base_size = 10)
```

12 transition.heatmap

Arguments

transition A matrix with transition probabilities (see also build_hmm).

initial An (optional) vector of initial probabilities.

base_size Numerical, a size parameter for the plots made using ggplot2 (see theme), de-

fault = 10.

See Also

See hmm. clust for an example.

Index

```
assign.clusters, 2, 9-11
build_hmm, 2-4, 7, 9, 10, 12
cluster.bic, 3, 3, 4
count.parameters, 3, 5, 8
emission.heatmap, 4
fit_model, 5, 9, 10
hmm.clust, 2, 4, 4, 8-12
model.11, 7
partition.bic, 3, 4, 7, 8
select.seeds, 8, 9-11
seq2hmm.11, 9
seqdef, 2, 5, 9, 10
size.search, 3, 8, 10
smooth.hmm, 10, 11
smooth.probabilities, 2, 5, 9, 10, 11
theme, 4, 12
transition.heatmap, 11
```