DBHC - Sequence Clustering with Discrete-Output HMMs
Provides an implementation of a mixture of hidden Markov models (HMMs) for discrete sequence data in the Discrete Bayesian HMM Clustering (DBHC) algorithm. The DBHC algorithm is an HMM Clustering algorithm that finds a mixture of discrete-output HMMs while using heuristics based on Bayesian Information Criterion (BIC) to search for the optimal number of HMM states and the optimal number of clusters.
Last updated 2 years ago
2.70 score 1 stars 3 scripts 177 downloads